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Motivation (curves in nonlinear spaces)

Gaussian measures in
Wasserstein spaces.

Visualization of a trajectory in
the special Euclidean group.
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Subdivision schemes
In multiscale transforms we use subdivision schemes as
upsampling operators.

A subdivision scheme associated with a mask α = {αj}j∈Z ⊂ R is a
refinement operator defined by

Sα(c)k =
∑
j∈Z

αk−2jcj , k ∈ Z,

for any sequence c = {cj}j∈Z ⊂ R.
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Subdivision schemes (cont.)
A necessary condition for the convergence of a subdivision scheme
Sα is the constant-reproduction property∑

j∈Z
α2j =

∑
j∈Z

α2j+1 = 1.

The refinement is called interpolating if α0 = 1. An essential tool for
analyzing the convergence of Sα is the z-transform of α, that is
defined by

α(z) =
∑
j∈Z

αjz j , z ∈ C,

and termed the symbol – becoming a complex Fourier series on the
unit circle T = {z ∈ C : |z| = 1}.
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Interpolating decomposition

With an interpolating subdivision scheme Sα, a sequence c(1)

associated with 2−1Z can be decomposed into a
coarse approximation c(0) and detail coefficients d (1) by

c(0) = Dc(1), d (1) = c(1) − Sαc(0),

where (Dc)k = c2k , k ∈ Z is the simple downsampling operator.
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Multiscaling via interpolating subdivision scheme
By construction it can be easily seen that d (1)

2k = 0 for all k ∈ Z, and
that is a vital property for applications in multiscaling.

Sequence c(J) decomposition−−−−−−−−⇀↽−−−−−−−−
reconstruction

Pyramid
{

c(0);d (1),d (2), . . . ,d (J)
}

Definition (multiscale transform)
The multiscale transform of a sequence c(J) associated with the
grid 2−JZ, J ∈ N is defined by

c(ℓ−1) = Dc(ℓ), d (ℓ) = c(ℓ) − Sαc(ℓ−1), ℓ = 1, . . . , J,

while the inverse multiscale transform is given by

c(ℓ) = Sαc(ℓ−1) + d (ℓ), ℓ = 1, . . . , J.
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The non-interpolating case
Iterating the multiscale transform with a non-interpolating
subdivision scheme Sα and the elementary downsampling
operator D does not(!) necessarily give

d (ℓ)
2k = 0, k ∈ Z, ℓ = 1, . . . , J.

We solve this problem by replacing D with the more general
decimation operator. For a sequence γ ∈ ℓ1(Z), the operator

(Dγc)k =
∑
j∈Z

γk−jc2j

gives zero even detail coefficients in multiscaling if

γ ∗ (Dα) = δ

where δ is the Kronecker delta sequence.
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Reversing
Under the z-transform, the convolution equation becomes

γ(z)(Dα)(z) = 1, z ∈ C.

Wiener’s lemma
In the Banach algebra of continuous functions

A(T) =
{

f (t) =
∑
j∈Z

ajeint , t ∈ [0,2π) | a ∈ ℓ1(Z)
}
,

if f ∈ A(T) does not vanish on T, then 1/f (t) is also in A(T).
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Reversing (cont.)
In case a reverse γ ∈ ℓ1(Z) exists, then there exist constants
C(κ) > 0 and λ(κ) ∈ (0,1) such that

|γk | ≤ Cλ|k |, k ∈ Z,

where κ is the reversibility condition number given by

κ =
supz∈T |(Dα)(z)|
infz∈T |(Dα)(z)|

∈ [1,∞].
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Reversing (cont.)
In case a reverse γ ∈ ℓ1(Z) exists, then there exist constants
C(κ) > 0 and λ(κ) ∈ (0,1) such that

|γk | ≤ Cλ|k |, k ∈ Z,

where κ is the reversibility condition number given by

κ =
supz∈T |(Dα)(z)|
infz∈T |(Dα)(z)|

∈ [1,∞].

However, a reverse does not always exist! For example,
least-squares subdivision schemes are usually irreversible!
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Pseudo-reversing
Let p(z) be a polynomial of degree n satisfying p(1) = 1, and denote
by Λ the set of its roots including multiplicities. By the complete
factorization theorem we rewrite p as

p(z) = C(p)
∏
r∈Λ

(z − r).

Definition (pseudo-reversing)
The pseudo-reverse of p is defined by

p†
ξ(z) =

(
C(p†

ξ)
∏

r∈Λ\T

(z − r)
∏

r∈Λ∩T

(
z − (1 + ξ)r

))−1

for some ξ > 0 where C(p†
ξ) is chosen such that p†

ξ(1) = 1.
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Example & properties
Example: Consider p(z) = (z2 + z + 1)/3 which vanishes for
z = 1/2 ± i

√
3/2 ∈ T. The pseudo-reverse of p is

p†
ξ(z) =

3 + 3ξ + ξ2

z2 + z(1 + ξ) + (1 + ξ)2 , ξ > 0.

Some properties:
1 The product p(z)p†

ξ(z) converges in A-norm (the ℓ1 norm of
coefficients) to the constant 1 as ξ → 0+.

2 The function p†
ξ(z) converges to 1 as ξ → ∞ on every compact

subset of C, provided Λ ⊂ T. Moreover,
3 the reversibility condition number κ of p−†

ξ (z) satisfies

κ ≤ (1 + 2/ξ)n.
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Illustration
Pseudo-reversing a least-squares-based subdivision scheme with
α = 1/12 [3, 4, 3, 4, 3, 4, 3] supported on [−3,3] ∩ Z.
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(a) Roots displacement

5 0 5 10 15 20 25

2

1

0

1

2

= 0.1
= 0.2
= 0.3

(b) Pseudo-reverse coefficients
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Adaptations to Riemannian manifolds
Let (M, ρ) be a Riemannian manifold.

p

q

q p

Adaptations of “−” and “+”:
q ⊖ p = Logp(q) ∈ TpM
p ⊕ v = Expp(v) ∈ M

p ⊕ (q ⊖ p) = q

Euclidean CoM x∗ =
∑n

j=1 βjxj
is generalized via:

x∗ ∈ argminx∈M

n∑
j=1

βjρ
2(x , xj)
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Multiscaling in Wasserstein spaces
We adapt the multiscaling to the space of probability measures

Pp(Rd) =

{
µ ∈ P(Rd)

∣∣ ∫
Rd

∥x∥pdµ(x) <∞
}

endowed with the Wasserstein metric Wp defined by

W p
p (µ, ν) = min

σ∈Π(µ,ν)

∫
Rd×Rd

∥x − y∥pdσ(x , y)

where Π(µ, ν) is the set of all probability measures on Rd × Rd with
marginals µ and ν.
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Weighted averaging
McCann’s interpolants can be utilized to define a weighted average.

Definition
The weighted average between µ, ν ∈ Pp(Rd) is defined by

M(µ, ν; t) = (πt)#σ, t ∈ [0,1],

where σ is an optimal transport plan pushing µ onto ν, and the
map πt : Rd × Rd → Rd is given by πt(x , y) = (1 − t)x + ty .

McCann’s interpolants are the only constant-speed geodesics in the
metric space (Pp(Rd),Wp).
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Operators on discrete measures (illustrations)

1 0 1 2 3

1

0

1

2

3

Source and target discrete uniform measures

s - 40 points

t - 20 points
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Operators on discrete measures (illustrations)

1 0 1 2 3

1

0
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2

3

The difference (for quadratic cost)

s - 40 points

t - 20 points
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Operators on discrete measures (illustrations)

1 0 1 2 3

1
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3

The average measure

s - 40 points

t - 20 points
M( s, t; 1/2) - 40 points
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Refinements in Wasserstein spaces
We focus on multiscaling measures with the most elementary
subdivision scheme S that is given by the rules

{
(Sc)2k = ck ,

(Sc)2k+1 = 1
2ck + 1

2ck+1,
k ∈ Z,

for a given R-valued sequence c. Therefore, for a Pp(Rd)-valued
sequence µ, the adaptation of S becomes

{
(Sµ)2k = µk ,

(Sµ)2k+1 = M(µk , µk+1;1/2),
k ∈ Z.
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The ⊖ and ⊕ operators
For A.C. measures µ, ν ∈ Pp(Rd) the difference is defined via

ν ⊖ µ = T ν
µ − I,

where T ν
µ is the optimal transport map, and I is the identity map.

With this definition, we have that µ⊖ µ = 0 the zero map, and

∥ν ⊖ µ∥p
Lp(Rd ;µ)

=

∫
Rd

∥T ν
µ (x)− x∥pdµ(x) = W p

p (µ, ν).

Moreover, the compatible ⊕ operator is defined via

µ⊕ ψ = (ψ + I)#µ,

for any Borel measurable map ψ : Rd → Rd .
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The ⊖ and ⊕ operators (for discrete measures)
For discrete probability measures µ, ν ∈ Pp(Rd) given by

µ =
m∑

i=1

pµi δxµi
and ν =

n∑
j=1

pνj δxνj ,

the difference is defined via

ν ⊖ µ =

([
xνj − xµi

]j=1,...,n
i=1,...,m, Λ

ν
µ

)
,

where Λνµ is the coupling matrix between µ and ν. In this case, the
compatible ⊕ operator is defined via

µ⊕ ψ =
m∑

i=1

k∑
j=1

λψi,jδxµi +xψi,j
,

for any tensor pair ψ = (xψ,Λψ) where x ∈ Rm×k×d and Λψ ∈ Rm×k .
Wael Mattar (TAU) Multiscale Analysis September 2025 23 / 46
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Theoretical results
Multiscaling a sequence µ(J) in Pp(Rd) with the above notations via
the interpolating elementary S becomes straightforward.

Theorem (decay of detail coefficients)
Assume µ(J) is sampled over the dyadic grid parametrization 2−JZ
from an absolutely continuous curve µ in Pp(Rd) with a finite
metric derivative Γ = supt∈R |µ′|t <∞. Then, the resulting detail
coefficients ψ(ℓ) satisfy

∥ψ(ℓ)∥∞ ≤ Γ21−ℓ, ℓ = 1, . . . , J,

where
∥ψ(ℓ)∥∞ = sup

k∈Z
∥ψ(ℓ)

k ∥
Lp(µ

(ℓ)
k )
.
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Theoretical results
The refinement S is called stable if there exists K > 0 such that

Wp(Sµ,Sν) ≤ K Wp(µ,ν)

for any sequences µ and ν where Wp(µ,ν) = supk∈Z Wp(µk , νk ).

Theorem (stability of reconstruction)

Let {µ(0);ψ(1), . . . ,ψ(J)} and {µ̃(0); ψ̃
(1)
, . . . , ψ̃

(J)
} be two pyramid

representations of µ(J) and µ̃(J), respectively. Assume that
∥ψ(ℓ)

k ∥Lip ≤ C for all ℓ = 1, . . . , J and k ∈ Z. If S is stable with
constant K , then for L = max{1, (KC)J} we have

Wp(µ
(J), µ̃(J)) ≤ L

(
Wp(µ

(0), µ̃(0)) +
J∑
ℓ=1

∥ψ(ℓ) − ψ̃
(ℓ)
∥∞

)
.
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Application 1: Denoising
Multiscaling A.C. measures in the Wasserstein space P2(R).

1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0000

0.0001

0.000

6.548
1e 6

0.000

5.456
1e 7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00

4.01
1e 8

Figure: Sequence of Gaussian measures and its multiscale transform.
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Application 1: Denoising
Multiscaling A.C. measures in the Wasserstein space P2(R).

1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0000

0.0944

0.0000

0.1995

0.0000

0.1255

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0000

0.1578

Figure: Contamination with noise.
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Application 1: Denoising
Multiscaling A.C. measures in the Wasserstein space P2(R).

1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0000

0.0096

0.0000

0.0073

0.000000

0.009742

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.000000

0.009753

Figure: Denoising result obtained by thresholding with 0.01.
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Application 2: Anomaly detection
Multiscaling A.C. measures in the Wasserstein space P2(R).

1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0000

0.0908

0.0000

0.0931

0.0000

0.0924

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0000

0.0926

Figure: Detecting jump discontinuities via multiscaling.
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Application 3: Analyzing NN learning dynamics
Multiscaling discrete measures in the Wasserstein space P2(R).

0 1 2 3 4 5 6 7 8 9

0
7

14
21
28
35
42
49
56
63
70
77
84
91
98

105
112
119
126
133
140
147
154

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0000

0.3401

0.0000

0.1912

0.0000
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1 17 33 49 65 81 97 113 129 145 161
0.00000

0.08241

Figure: Analyzing the learning dynamics of a simple neural network on
MNIST dataset. On the left, the prediction of the digit “3” across epoch
iterations. On the right, the multiscale transform of the resulted measure
sequence. The convergence is clear on coarse scales.
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Application 4: Contrast enhancement
The manifold of interest is M = SO(3).

Figure: Contrast enhancement of a sequence of rotation matrices. On the
left, illustration of the original sequence applied to the standard basis of
R3. On the right, the enhanced sequence obtained by scaling the top 20%
of detail coefficients with a factor of 40%.
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Application 5: Data compression
The manifold of interest is M = SO(3)⋉R3.

Figure: Data compression of a rigid body motion. On the left, illustration
of 641 matrices representing the special Euclidean sequence. On the
right, the decompressed trajectory that is obtained by 41 matrices in
addition to 12 detail coefficients.
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Bivariate multiscale transform
Multivariate multiscale transforms can be constructed by applying
tensor products to α and γ.

0 0

0 0

Figure: Sketch for decomposing a 4 × 4 grayscale image.
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Multiscaling an image

Figure: Multiscaling an image of the author’s own brain (MRI).
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Motivation
We take a new approach to autoregressive image generation that
is based on two main ingredients:

1 Wavelet image coding, and
2 an LLM transformer with a re-designed architecture.

Wavelets are all you need for autoregressive image generation.

Mattar W, Levy I, Sharon N, Dekel S. Pure and Functional Analysis.
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Wavelet scanning order
For images we scan wavelet coefficients in the following pattern
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Embedded wavelet tokenization
We describe how to tokenize wavelet images with only 7 tokens.
Let f ∈ [0,1]M×M be an image, and assume M = 2m for some m ∈ N.
Denote by ω its MRA decomposition. Namely,

ω(i1,i2) =

{
⟨f , φ̃m,(i1,i2)⟩, 1 ≤ i1, i2 ≤ 2,
⟨f , ψ̃e

j,k ⟩, 3 ≤ i1, i2 ≤ M, 1 ≤ j ≤ m, e = 1,2,3.

After m − 1 iterations of the bivariate DWT we have

max
(i1,i2)

|ω(i1,i2)| ≤ 2m−1.

Now, compute m̃ = ⌈log2 max(i1,i2) |ω(i1,i2)|⌉ and initialize the first
threshold T = 2m̃−1 for the beginning of the tokenization.
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First bit-plane
Beginning with the initial bit-plane [T/2,T ]:

• If |ω(i1,i2)| ≥ T/2 ⇒ the coefficient will be reported with
‘NowSignificantPos’ or ‘NowSignificantNeg’ and gets the
approximation value ± 3T/4 depending on its sign.

• If |ω(i1,i2)| < T/2 ⇒ the coefficient will be reported as
‘Insignificant’ and gets the approximation value 0.
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Next Accuracy bits

Next, the bit-plane is updated to [T/4,T/2]:

• Previously reported significant coefficients get either
‘NextAccuracy0’ or ‘NextAccuracy1’ depending on the
comparison between their true value and the encoded
approximation. Their App. will be updated with ± T/8.

• If T/4 ≤ |ω(i1,i2)| ≤ T/2 ⇒ the coefficient will be reported
with ‘NowSignificantPos’ or ‘NowSignificantNeg’ and gets the
approximation value ± 3T/8 depending on its sign.

Wael Mattar (TAU) Multiscale Analysis September 2025 39 / 46
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Zero blocks
We introduce two additional tokens to shorten the tokenization:

• The token ‘Group2x2’ replaces each square block of 4
‘Insignificant’ tokens falling in the same subband if the top left
position indices are divisible by 2.

• The token ‘Group4x4’ replaces each square block of 16
‘Insignificant’ tokens falling in the same subband if the top left
position indices are divisible by 4.

The token sequences are then concatenated in the natural order of
the bit-planes. Let us illustrate the process visually.
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Tokenization process (illustration)
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Dataset structure
The resulting dataframe of the MNIST dataset tokenization with the
Haar wavelet. The tokenization terminated at T = 2−3.
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Architecture modification
The transformer architecture is modified as follows:

• The classical positional encoding is cancelled. Instead,
• at the transformer’s embedding layer, we concatenate the

one-shot vector representations of the tokens with the
corresponding positions, and then with the threshold and the
image class id.

(
0, . . . ,1, . . . ,0︸ ︷︷ ︸

token

, i1, i2, k︸ ︷︷ ︸
position & BP

,0, . . . ,1, . . . ,0︸ ︷︷ ︸
threshold

,0, . . . ,1, . . . ,0︸ ︷︷ ︸
class

)
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Conditional inference
We impose conditions on the acceptance of the next predicted
token. In particular, at any given position,

• ‘NowSignificant’ tokens can only be preceded by ‘Insignificant’
or ‘Group’ tokens and followed by ‘NextAccuracy’ tokens.

• ‘NextAccuracy’ tokens can only be preceded by ‘NextAccuracy’
or ‘NowSignificant’ tokens.

• ‘Insignificant’ can only be preceded by either ‘Insignificant’ or
‘Group’ tokens.

• ‘Group2x2’ can only be preceded by ‘Group’ tokens.

• ‘Group4x4’ can only be preceded by a ‘Group4x4’ token.
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Empirical results
Some results of the Wavelet Generative Transformer trained on the
MNIST dataset, with Haar wavelet tokenization and 2−3 minimal
threshold.
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Empirical results
Some results of the Wavelet Generative Transformer trained on the
FashionMNIST dataset, with bior4.4 wavelet tokenization and 2−4

minimal threshold.
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Empirical results
Two separate DistilGPT2 models were trained on the two datasets.
We used an NVIDIA A100 GPU with 80GB; MNIST occupied 22GB
while FashionMNIST occupied 61GB. Both models were trained for
few days. Here are some extra results.
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Thank you for listening!
Questions?

Image generated by Google’s Gemini
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