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Curves on manifolds

A trajectory on the sphere
S2 ⊂ R3.

Visualization of a trajectory in
the special Euclidean group.
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Subdivision schemes

Main idea: define the desired object via local refinement,

P0 ⇒ P1 ⇒ P2 ⇒ P3 · · · P∞

For example,



A short intro Pyramid essentials Manifold-valued transform Numerical examples

Subdivision schemes

Main idea: define the desired object via local refinement,

P0 ⇒ P1 ⇒ P2 ⇒ P3 · · · P∞

For example,



A short intro Pyramid essentials Manifold-valued transform Numerical examples

Multiscale representation

Analysis: decomposing an M-valued sequence c(J), associated
with scale J ∈ N, to {c(0);d (1),d (2), . . . ,d (J)}.
Synthesis: recover c(J) from an M-valued coarse approximation
of resolution 0, c(0), using the detail coefficients d (ℓ) of scale
ℓ = 1, 2, . . . , J.

which is the inverse transform of (8). The detail coe�cient d
(`)
k measures the agreement between

c
(`)
k and (S↵c(`�1))k at index k 2 Z. In particular, since S↵ is interpolatory, we have that d

(`)
2k = 0

for all k 2 Z, that is,

⇥
(I � S↵ # 2)c(`)

⇤
# 2 = 0, ` = 1, 2, . . . , J, (10)

where I is the identity operator in the functional setting. Therefore, property (10) allows us to
omit “half” of the detail coe�cients of each layer as we represent real-valued sequences – a natural
benefit for data compression. The diagrams of Figure 1 demonstrate the interpolating multiscale
transform (8) and its inverse.
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Figure 1: The pyramid transform. On the left, the analysis (8), on the right, the synthesis (9).

In fact, the interpolating multiscale transform (8) is a special case of the family of transforms
presented in [6]. In particular, the operators S↵ and # 2 play the roles of upscaling and downscaling
filters, respectively.

2.4 Non-Interpolating linear multiscale transform

The di�culty in using non-interpolatory upscaling operators S↵ in multiscale like (8), is that
the sequence S↵(c) does not preserve the elements c. In such settings, the details must include
more than just the di↵erence between the original sequence c and refined downsampled sequence
S↵(c # 2).

The extension of multiscale transforms from interpolatory subdivision operators to a wider
class of subdivision operators involved even-reversible operators. Each of these operators helps
recover, after one iteration of refinement, data points associated with even indices. In other words,
given a subdivision operator S↵, we seek for an operator D such that

⇥
(I � S↵D)c

⇤
# 2 = 0 (11)

5



A short intro Pyramid essentials Manifold-valued transform Numerical examples

Multiscale representation

Analysis: decomposing an M-valued sequence c(J), associated
with scale J ∈ N, to {c(0);d (1),d (2), . . . ,d (J)}.
Synthesis: recover c(J) from an M-valued coarse approximation
of resolution 0, c(0), using the detail coefficients d (ℓ) of scale
ℓ = 1, 2, . . . , J.

which is the inverse transform of (8). The detail coe�cient d
(`)
k measures the agreement between

c
(`)
k and (S↵c(`�1))k at index k 2 Z. In particular, since S↵ is interpolatory, we have that d

(`)
2k = 0

for all k 2 Z, that is,

⇥
(I � S↵ # 2)c(`)

⇤
# 2 = 0, ` = 1, 2, . . . , J, (10)

where I is the identity operator in the functional setting. Therefore, property (10) allows us to
omit “half” of the detail coe�cients of each layer as we represent real-valued sequences – a natural
benefit for data compression. The diagrams of Figure 1 demonstrate the interpolating multiscale
transform (8) and its inverse.

c(J)

c(J�1) d(J)

c(J�2) d(J�1)

c(1)

c(0) d(1)

#2 �

#2 �

#2 �

(a)

c(J)

d(J) c(J�1)

c(2)

d(2) c(1)

d(1) c(0)

+ S↵

+ S↵

+ S↵

(b)

Figure 1: The pyramid transform. On the left, the analysis (8), on the right, the synthesis (9).

In fact, the interpolating multiscale transform (8) is a special case of the family of transforms
presented in [6]. In particular, the operators S↵ and # 2 play the roles of upscaling and downscaling
filters, respectively.

2.4 Non-Interpolating linear multiscale transform

The di�culty in using non-interpolatory upscaling operators S↵ in multiscale like (8), is that
the sequence S↵(c) does not preserve the elements c. In such settings, the details must include
more than just the di↵erence between the original sequence c and refined downsampled sequence
S↵(c # 2).

The extension of multiscale transforms from interpolatory subdivision operators to a wider
class of subdivision operators involved even-reversible operators. Each of these operators helps
recover, after one iteration of refinement, data points associated with even indices. In other words,
given a subdivision operator S↵, we seek for an operator D such that

⇥
(I � S↵D)c

⇤
# 2 = 0 (11)

5



Outline

1 A short intro

2 Pyramid essentials

3 Manifold-valued transform

4 Numerical examples



A short intro Pyramid essentials Manifold-valued transform Numerical examples

Interpolating subdivision scheme & pyramid transform

Interpolating subdivision scheme operator Sα satisfies

(Sαc)2k = ck , k ∈ Z.

Interpolating decomposition

Given a real-valued sequence c(1), the decomposition is

c(0) = c(1) ↓ 2, and d (1) = c(1) − Sαc(0).

⇒ Details satisfy d (1) ↓ 2 = 0 which is equivalent to

[(I − Sα↓ 2)c(1)] ↓ 2 = 0



A short intro Pyramid essentials Manifold-valued transform Numerical examples

Interpolating subdivision scheme & pyramid transform

Interpolating subdivision scheme operator Sα satisfies

(Sαc)2k = ck , k ∈ Z.

Interpolating decomposition

Given a real-valued sequence c(1), the decomposition is

c(0) = c(1) ↓ 2, and d (1) = c(1) − Sαc(0).

⇒ Details satisfy d (1) ↓ 2 = 0 which is equivalent to

[(I − Sα↓ 2)c(1)] ↓ 2 = 0



A short intro Pyramid essentials Manifold-valued transform Numerical examples

Interpolating subdivision scheme & pyramid transform

Interpolating subdivision scheme operator Sα satisfies

(Sαc)2k = ck , k ∈ Z.

Interpolating decomposition

Given a real-valued sequence c(1), the decomposition is

c(0) = c(1) ↓ 2, and d (1) = c(1) − Sαc(0).

⇒ Details satisfy d (1) ↓ 2 = 0 which is equivalent to

[(I − Sα↓ 2)c(1)] ↓ 2 = 0



A short intro Pyramid essentials Manifold-valued transform Numerical examples

The non-interpolatory case

For non-interpolatory upsampling operator, it is no longer true that
d (1) ↓ 2 = 0. Therefore, we need to fill this gap.

Decimation operator

Let Sα be non-interpolating subdivision operator, we say that Dγ

is its corresponding even-inverse operator if

[(I − SαDγ)c] ↓ 2 = 0,

where I is the identity operator.

The application of Dγ on points c yields to fewer points
representing a coarse approximation of c .

The operator Dγ is given explicitly via γ ∗ (α ↓ 2) = δ.

The sequence γ is infinitely supported, sums to 1, and is
bounded by a geometrically decreasing sequence.
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Pyramid transform with decimation

Sequence c(J) decomposition−−−−−−−−⇀↽−−−−−−−−
reconstruction

Pyramid
{
c(0);d (1),d (2), . . . ,d (J)

}

Pyramid transform

Given a real-valued sequence c(J), J ∈ N, we define the multiscale
transform iteratively by

c(ℓ−1) = Dγc(ℓ), d (ℓ) = c(ℓ) − Sαc(ℓ−1), ℓ = J, J − 1, . . . , 1.

Inverse transform

The sequence c(J) can be synthesized iteratively via

c(ℓ) = Sαc(ℓ−1) + d (ℓ), ℓ = 1, 2, . . . , J.
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The linear subdivision rewritten

The linear refinement (Sαc)k =
∑

i∈Z
αk−2ici can be seen as the

unique real solution X of,

∑

i∈Z
αk−2i (ci − X ) = 0, k ∈ Z.

Therefore, we can rewrite the refinement rule as

(Sαc)k = argminX∈R
∑

i∈Z
αk−2i∥ci − X∥2, k ∈ Z.
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The manifold-valued refinement rule

Geodesic distance: Given a Riemannian manifold (M, ρ)
associated with metric,

ρ(x , y) := inf
Γ

∫ b

a
|Γ̇(t)|dt,

where Γ : [a, b] → M is a curve connecting points Γ(a) = x and
Γ(b) = y , and | · |2 = ⟨·, ·⟩.

We define Tα to be the Riemannian counterpart of Sα by using
the Riemannian Center of Mass (R-CoM), also known as Karcher
or Fréchet means,

(Tαc)k := argminX∈M
∑

i∈Z
αk−2iρ

2(ci ,X ), k ∈ Z.
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Manifold-valued operators for the multiscale

The corresponding decimation operator Yζ can be extended to M
in a similar way, based on the R-CoM and the linear schemes.

Sα Dζ

Tα Yζ

Manifold Adaptation

Inverting
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Multiscale transform on manifolds

Denote the exponential map of a vector v in the tangent space
Tb M around a base point b and its inverse logarithm map by

b ⊕ v = Expb(v), and q ⊖ b = Logb(q), b, q ∈ M .

Pyramid transform for manifold values

Given a M-valued sequence c(J), J ∈ N, we define the multiscale
transform iteratively by

c(ℓ−1) = Yζc(ℓ), d (ℓ) = c(ℓ) ⊖ Tαc(ℓ−1), ℓ = J, J − 1, . . . , 1.

Note that the detail coefficients live in the tangent bundle TM.

Inverse transform

The sequence c(J) can be synthesized iteratively via

c(ℓ) = Tαc(ℓ−1) ⊕ d (ℓ), ℓ = 1, 2, . . . , J.
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Analytical results

What properties does the pyramid transform satisfy?

Theorem (stability)

Let M be a complete, open manifold with non-negative sectional

curvature. Let {c(0);d (1), . . . ,d (J)} and {c̃(0); d̃
(1)

, . . . , d̃
(J)} be

two pyramids. Then the synthesis sequences c(J) and c̃(J) satisfy

µ(c(J), c̃(J)) ≤ L

(
µ(c(0), c̃(0)) +

J∑

i=1

∥d̂ (i) − d̃
(i)∥∞

)

where d̂
(i)

is the parallel transport of d (i) along the geodesics
connecting c(i) with Tαc̃(i−1), element-wise, and
µ(c , c̃) = sup

k∈Z
ρ(ck , c̃k).
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Analytical results

Corollary (coefficients decay)

If the sequence c(J) is sampled from a differentiable M-valued
curve f over an arc-length equidistanced grid with scale J. Then,

∥d (ℓ)∥∞ ≤ KPJ sup
t

∥∇f (t)∥ · (2P)−ℓ, ℓ = 1, 2, . . . , J,

for some P > 1 and K ≥ 0 depending on the curvature of M.
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Representing a curve on the sphere

We consider the pyramid transform using the cubic B-spline
scheme.
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A smooth S2-valued curve with its corresponding multiscale
representation. Decay of detail coefficients indicate the
smoothness of the curve.
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Denoising the curve over the sphere
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The curve contaminated with noise points and the corresponding
representation. Large norms on high scales indicating
non-smoothness.
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Denoising the curve over the sphere (cont.)

Denoising via thresholding: we set to zero all detail coefficients
with norm below a fixed threshold. We synthesized the resulted
sparse representation.
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Anomaly Detection in a time series over SPD(3)

Let M = SPD(3) be the cone of symmetric positive definite
matrices.

The SPD matrices are visualized by centric ellipsoids:

The first SPD(3)-valued sequence

The second SPD(3)-valued sequence – with two “jump” points
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Anomaly Detection over SPD(3)

We apply the pyramid transform based upon the corner-cutting
scheme.
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Frobenius norms of the details coefficients. On the left, the
multiscale representation of the first (smooth) sequence. On the
right, the representation of the second sequence. The jump
locations are clearly seen via the large magnitude detail coefficients.
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Contrast Enhancement over SO(3)

We apply the pyramid transform based upon least squares scheme.

On the left, the raw trajectory of rotation matrices. On the right,
the result of contrast-enhancing the trajectory. The detail
coefficients were enlarged by 50%. The drastic deflections exhibit
the effect of the application.
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Thanks for your attention!
Questions?
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