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A short intro
.

Curves on manifolds

|
A trajectory on the sphere Visualization of a trajectory in
S?2 Cc R3. the special Euclidean group.
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Subdivision schemes

Main idea: define the desired object via local refinement,
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Multiscale representation

Analysis: decomposing an M-valued sequence c¥)| associated
with scale J € N, to {c(o); db d? .. d(J)}.

Synthesis: recover ¢ from an M-valued coarse approximation
of resolution 0, ¢(©, using the detail coefficients d® of scale
£=1,2,...,J.
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@ Interpolating subdivision scheme operator S, satisfies
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Given a real-valued sequence ¢ the decomposition is
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Pyramid essentials
°

Interpolating subdivision scheme & pyramid transform

@ Interpolating subdivision scheme operator S, satisfies

(Sac)2k =cx, ke

Interpolating decomposition

Given a real-valued sequence ¢ the decomposition is

c®=cW |2 and dU=cV-5,c0.

= Details satisfy d® 1 2 = 0 which is equivalent to

(Z—Sal2)c™M L 2=0
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°

The non-interpolatory case

For non-interpolatory upsampling operator, it is no longer true that
d® 12 =0. Therefore, we need to fill this gap.
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°

The non-interpolatory case

Decimation operator

Let So be non-interpolating subdivision operator, we say that D
is its corresponding even-inverse operator if

(T — SaD-)e] L 2=0,

where 7 is the identity operator.
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°

The non-interpolatory case

Decimation operator

Let So be non-interpolating subdivision operator, we say that D
is its corresponding even-inverse operator if

(T — SaD-)e] L 2=0,

where 7 is the identity operator.

@ The application of D, on points c yields to fewer points
representing a coarse approximation of c.

@ The operator D, is given explicitly via v * (a | 2) = 4.

@ The sequence ~ is infinitely supported, sums to 1, and is
bounded by a geometrically decreasing sequence.
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Pyramid transform with decimation

Sequence c

decomposition
—_ N\

sE————
reconstruction

Pyramid {c(o); d(l), d(2), ce d(J)}




Pyramid essentials
°

Pyramid transform with decimation

Sequence c M Pyramid {c(o); d(l), d(2), ce d(J)}

reconstruction

Pyramid transform

Given a real-valued sequence C(J), J € N, we define the multiscale
transform iteratively by

-1 :ch“), d9=c® _s, etV =y J—1,..., 1
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°

Pyramid transform with decimation

Sequence c M Pyramid {c(o); d(l), d(2), ce d(J)}

reconstruction

Pyramid transform

Given a real-valued sequence C(J), J € N, we define the multiscale
transform iteratively by

-1 :ch“), d9=c® _s, etV =y J—1,..., 1

Inverse transform

The sequence c™) can be synthesized iteratively via
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Manifold-valued transform
°

The linear subdivision rewritten

The linear refinement (So€)x = E k_»2iC; can be seen as the
i€Z
unique real solution X of,

Zak_g,-(c,- — X) =0, keZ.
i€EZ

Therefore, we can rewrite the refinement rule as

(Sa€)k = argminXeRZak_2,-||c,- - X|?, keZ.
i€Z




Manifold-valued transform
.

The manifold-valued refinement rule

Geodesic distance: Given a Riemannian manifold (M, p)
associated with metric,

b .
plesy) = inf [ IF(o)l

where I : [a, b] — M is a curve connecting points ['(a) = x and
r(b) =y, and |[-[*=(,).



Manifold-valued transform
.

The manifold-valued refinement rule

Geodesic distance: Given a Riemannian manifold (M, p)
associated with metric,

b .
plesy) = inf [ IF(o)l

where I : [a, b] — M is a curve connecting points ['(a) = x and
r(b) =y, and |[-[*=(,).

We define T4 to be the Riemannian counterpart of S, by using
the Riemannian Center of Mass (R-CoM), also known as Karcher
or Fréchet means,

(Ta€)k = argminyc g Zak72;p2(c,-, X), kelZ.
i€Z
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°

Manifold-valued operators for the multiscale

The corresponding decimation operator )¢ can be extended to M
in a similar way, based on the R-CoM and the linear schemes.
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Manifold-valued operators for the multiscale

The corresponding decimation operator )¢ can be extended to M
in a similar way, based on the R-CoM and the linear schemes.
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Manifold-valued transform
.

Multiscale transform on manifolds

Denote the exponential map of a vector v in the tangent space
Ty M around a base point b and its inverse logarithm map by

b® v =Expy(v), and qob=Logyq), b,ge M.
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Pyramid transform for manifold values

Given a M-valued sequence C(J), J € N, we define the multiscale
transform iteratively by
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Note that the detail coefficients live in the tangent bundle T M.



Manifold-valued transform
.

Multiscale transform on manifolds

Denote the exponential map of a vector v in the tangent space
Ty M around a base point b and its inverse logarithm map by

b® v =Expy(v), and qob=Logyq), b,ge M.

Pyramid transform for manifold values

Given a M-valued sequence C(J), J € N, we define the multiscale
transform iteratively by

-1 — ycc(€)7 d9=cO 7"V, ¢=J -1, ..., 1.

Note that the detail coefficients live in the tangent bundle T M.

Inverse transform

The sequence ¢ can be synthesized iteratively via

¥ =T,V gad® =12 ... J.




Manifold-valued transform
°

Analytical results

What properties does the pyramid transform satisfy?



Manifold-valued transform
°

Analytical results

Corollary (coefficients decay)

If the sequence ') is sampled from a differentiable M-valued
curve f over an arc-length equidistanced grid with scale J. Then,

||d(£)||oo < KPsup |[VF(1)||- (2P) ¢, ¢=1,2,...,J,
t

for some P > 1 and K > 0 depending on the curvature of M.




Manifold-valued transform
°

Analytical results

Theorem (stability)

Let M be a complete, open manifold with non-negative sectional
1 ~(J

curvature. Let {c©;d® ... dY)} and {c ( ) .,d( )} be

two pyramids. Then the syntheSIs sequences C(J ) and ¢V satisfy

u(c“hz“’)g( (c® 2 +Zud i Hoo>

where cAl(’) IS the parallel transport of d") along the geodesics
connecting c) with Ta cli=1) , element-wise, and

p(c, €) = sup p(ck, k)
kez
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Numerical examples
°

Representing a curve on the sphere

We consider the pyramid transform using the cubic B-spline
scheme.
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Representing a curve on the sphere

We consider the pyramid transform using the cubic B-spline
scheme.
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A smooth S?-valued curve with its corresponding multiscale
representation. Decay of detail coefficients indicate the
smoothness of the curve.
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Denoising the curve over the sphere
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Denoising the curve over the sphere
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The curve contaminated with noise points and the corresponding
representation. Large norms on high scales indicating
non-smoothness.
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Denoising the curve over the sphere (cont.)

Denoising via thresholding: we set to zero all detail coefficients
with norm below a fixed threshold. We synthesized the resulted
sparse representation.



Numerical examples
°

Denoising the curve over the sphere (cont.)

Denoising via thresholding: we set to zero all detail coefficients
with norm below a fixed threshold. We synthesized the resulted
sparse representation.
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Numerical examples
.

Anomaly Detection in a time series over SPD(3)

Let M = SPD(3) be the cone of symmetric positive definite
matrices.



Numerical examples
.

Anomaly Detection in a time series over SPD(3)

Let M = SPD(3) be the cone of symmetric positive definite
matrices.

The SPD matrices are visualized by centric ellipsoids:

COGEEE6666666000000000000IIIDI09000000000
The first SPD(3)-valued sequence

GOGEE666666660cccco v oo oPPP99000000000

The second SPD(3)-valued sequence — with two “jump” points
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Anomaly Detection over SPD(3)

We apply the pyramid transform based upon the corner-cutting
scheme.



Numerical examples
°

Anomaly Detection over SPD(3)

We apply the pyramid transform based upon the corner-cutting

scheme.
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Frobenius norms of the details coefficients. On the left, the
multiscale representation of the first (smooth) sequence. On the
right, the representation of the second sequence. The jump
locations are clearly seen via the large magnitude detail coefficients.
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.

Contrast Enhancement over SO(3)

We apply the pyramid transform based upon least squares scheme.




Numerical examples

Contrast Enhancement over SO(3)

We apply the pyramid transform based upon least squares scheme.

On the left, the raw trajectory of rotation matrices. On the right,
the result of contrast-enhancing the trajectory. The detail
coefficients were enlarged by 50%. The drastic deflections exhibit
the effect of the application.



Thanks for your attention!
Questions?
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